Contoh soal pertidaksamaan kuadrat dan pembahasan

Contoh soal pertidaksamaan kuadrat dan pembahasan

Pertidaksamaan kuadrat dan pembahasannya. Pertidaksamaan kuadrat adalah persamaan kuadrat dengan notasi kurang dari (<), lebih dari (>), kurang dari sama dengan (≤) ataupun lebih dari sama dengan (≥).

Cara menentukan penyelesaian pertidaksamaan kuadrat sebagai berikut:
  1.     Tentukan akar-akar pertidaksamaan kuadrat. Caranya bisa menggunakan metoden pemfaktoran ataupun dengan rumus ABC.
  2.     Buat garis bilangan
  3.     Berdasarkan garis bilangan kita tentukan himpunan penyelesaian pertidaksamaan kuadrat.


Untuk lebih jelasnya perhatikan contoh soal pertidaksamaan kuadrat dan pembahasannya dibawah ini.

Contoh soal 1

Himpunan penyelesaian dari pertidaksamaan kuadrat x2 – 8x + 15 ≤ 0 untuk x ∈ R adalah…
A. {x|-5 ≤ x ≥ -3}
B. {x|3 ≤ x ≤ 5}
C. {x|x ≤ -5 atau x ≥ -3}
D. {x|x ≤ -3 atau x ≥ 5}
E. {x|x ≤ -3 atau x ≥ -5}

Pembahasan / penyelesaian soal

Untuk menjawab soal ini kita faktorkan pertidaksamaan diatas dengan cara:
→ x2 – 8x + 15 ≤ 0
→ (x – 3) (x – 5) ≤ 0
→ x1 = 3 atau x2 = 5

Lalu kita buat garis bilangan. Untuk menentukan tanda (+) atau (-) kita subtitusikan angka < 3 (misalkan x = 2) ke x2 – 8x + 15 = 22 – 8 . 2 + 15 = +3. Karena hasilnya positif berarti tanda garis bilangan positif (+, – , +) 

seperti gambar dibawah ini.

Garis bilangan jawaban nomor 1


Karena notasi pertidaksamaan kurang dari sama dengan (≤) maka himpunan penyelesaian ditunjukkan oleh garis bilangan bertanda negatif atau pada interval 3 ≤ x ≤ 5. Jadi soal ini jawabannya B.

Contoh soal 2

Himpunan penyelesaian dari pertidaksamaan kuadrat x2 – 5x – 6 > 0 untuk x ∈ R adalah …

A. {x|x < -1 atau x > 6}
B. {x|x < 2 atau x > 3}
C. {x|-3 < x < 2}
D. {x|x < -6 atau x > 6}
E. {x|-6 < x < 1}

Pembahasan / penyelesaian soal

Cara menjawab soal ini sebagai berikut:
→ x2 – 5x – 6 > 0
→ (x – 6)(x + 1) > 0
→ x1 = 6 atau x2 = -1

Untuk menentukan tanda garis bilangan kita subtitusikan angka yang lebih kecil dari -1 (misalkan x = – 2) ke pertidaksamaan kuadrat x2 – 5x – 6 = (-2)2 – 5 (-2) – 6 = 4 + 10 – 6 = + 9. Hasilnya positif sehingga tanda garis bilangan diawali positif (+ , – , +):

Garis bilangan nomor 2

Karena notasi pertidaksamaan lebih dari (>) maka himpunan penyelesaian ditunjukkan oleh garis bilangan dengan tanda positif atau pada interval {x|x < -1 atau x > 6}. 

Jadi soal ini jawabannya A.

Contoh soal 3

Himpunan penyelesaian dari pertidaksamaan x2 – 3x – 10 < 0 adalah…
A. x< -2 atau x > 5
B. x < 5
C. -2 < x < 5
D. -5 < x < 2
E. 2 < x < 5

Pembahasan / penyelesaian soal

Cara menjawab soal ini sebagai berikut:

→ x2 – 3x – 10 < 0
→ (x – 5) (x + 2) < 0
→ x1 = 5 atau x2 = – 2

Untuk membuat garis bilangan kita subtitusikan angka yang lebih kecil dari – 2 (misalkan x = -3) ke x2 – 3x – 10 = (-3)2 – 3 . (- 3) – 10 = + 8. 

Hasilnya positif sehingga tanda garis bilangan diawali positif (+ , – , +):


Garis bilangan nomor 3

Karena notasi pertidaksamaan kuadrat kurang dari (<) maka himpunan penyelesaian ditunjukkan oleh garis bilangan dengan tanda negatif atau pada interval -2 < x < 5. Soal ini jawabannya C.

Contoh soal 4

Himpunan penyelesaian dari 3x2 + 4x > 7 adalah …
A. x < – 1/4 atau x > 0
B. x < – 1/2 atau x > 1
C. x < -1 atau x > 1
D. x < -7/3 atau x > 1
E. x < -1/3 atau x > 0

Pembahasan / penyelesaian soal

Pertidaksamaan diatas diubah bentuknya menjadi 3x2 + 4x – 7 > 0. Jadi kita ketahui a = 3, b = 4 dan c = -7. 

Selanjutnya kita tentukan akar-akar dari pertidaksamaan dengan menggunakan rumus ABC:


→ x1,2 =
-b ± √ b2– 4 . a . c
2 . a

→ x1,2 =
-4 ± √ 42– 4 . 3 . -7
2 . 3

→ x1,2 =
– 4 ± √ 100
6
=
– 4 ± 10
6

→ x1 =
-4 + 10
6
= 1
→ x2 =
-4 – 10
6
=
-14
6
= –
7
3

Selanjutnya kita buat garis bilangan dengan cara subtitusi angka yang lebih kecil dari -7/3 (misalkan x = -3) ke 32 + 4x – 7 = 3 . (-3)2 + 4 (-3) – 7 = + 8. 

Hasilnya positif sehingga tanda garis bilangan +, -, + atau:

Garis bilangan nomor 4

Karena notasi pertidaksamaan kuadrat > maka himpunan penyelesaian ditunjukkan oleh garis bilangan dengan tanda positif x < -7/3 atau x > 1. Soal ini jawabannya D.

Contoh soal 5

Himpunan penyelesaian pertidaksamaan x2 + 4x – 21 ≤ 0 adalah…
A. {x|x ≤ 3 atau x ≥ 7, x ∈ R }
B. {x|x ≤ -3 atau x ≥ 7, x ∈ R }
C. {x|3 ≤ x ≤ 7, x ∈ R}
D. {x|-7 ≤ x ≤ 3, x ∈ R}
E. {x|-3 ≤ x ≤ 7, x ∈ R}

Pembahasan / penyelesaian soal

Cara menjawab soal ini sebagai berikut:
x2 + 4x – 21 ≤
(x + 7)(x – 3) ≤ 0
x1 = -7 atau x2 = 3

Garis bilangan nomor 5

Berdasarkan garis bilangan diatas maka himpunan penyelesaian soal nomor 5 adalah {x|-7 ≤ x ≤ 3, x ∈ R}. Soal ini jawabannya D.

Contoh soal 6

Himpunan penyelesaian dari pertidaksamaan 2x2 + 6x – 8 ≥ 0 adalah…
A. {x|x ≤ -4 atau x ≥ 1, x ∈ R }
B. {x|x ≤ -4 atau x ≥ -1, x ∈ R }
C. {x|1 ≤ x ≤ 4, x ∈ R}
D. {x|-4 ≤ x ≤ -1, x ∈ R}
E. {x|-4 ≤ x ≤ 1, x ∈ R}

Pembahasan / penyelesaian soal


 
22 + 6x – 8 ≥ 0 :2
x2 + 3x – 4 ≥ 0
(x + 4)(x – 1) ≥ 0
x1 = -4 ataun x2 = 1

Garis bilangan nomor 6

Berdasarkan garis bilangan diatas kita peroleh himpunan penyelesaian {x|x ≤ -4 atau x ≥ 1, x ∈ R }. Jadi soal ini jawabannya A.



Previous
Next Post »